کاربر عزیز خوش آمدید!
|

آیا سئوی سایت تضمینی است؟

آیا سئو سایت تضمینی است؟
این موضوع خیلی مهم است که آیا سئو کردن سایت می تواند تضمینی باشد یا خیر؟
امروزه اکثر شرکت های طراحی سایت این ادعا را دارند که می توانند در این زمینه (سئو سازی سایت) موفق باشند و هزینه های گزافی از شرکتها دریافت می کنند.
الگوریتم های گوگل بسیار پیشرفته هستند و حدس زدن آنها و تضمین آن امکان پذیر نیست. تنها تخصص و مهارت و تجربه در این حوزه می تواند مفید باشد.
سئو کردن سایت نیاز به مهارت و صبر و حوصله دارد، به طوری که باید مسیر درست در زمینه طراحی و پیاده سازی سایت و محتوا گذاری آن انجام داد.
طراحی سایت از مهمترین موارد می باشد و به عنوان شاخه ای از هنر و توسعه بازاریابی شناخته می شود؛ سئو کردن، تخصصی است که ابزارش خلاقیت بصری و دانش برنامه نویسی است.

معرفی کتاب فارسی آموزش سیلواکو (Silvaco)


در این پست به معرفی کتاب آموزش نرم افزار سیلواکو که به صورت الکترونیکی و به زبان فارسی ارائه شده می پردازیم. این کتاب در 332 صفحه نگارش شده و شامل فصل های زیر می باشد:

فصل اول - آموزش نصب نرم افزار Silvaco
1-1- مقدمه
2-1- طریقه نصب سیلواکو

فصل دوم - معرفی نرم افزار سیلواکو
1-2- مقدمه
2-2- معرفی ابزار شبیه سازی ATLAS
3-2- مدلهای فیزیکی
4-2- مراجع

فصل سوم - شروع کار با Silvaco Atlas
1-3- بررسی اجمالی Deckbuild
2-3- فراخوانی Atlas
3-3- ورودیها و خروجیهای ATLAS
4-3- ساختار فایلهای ورودی در ATLAS
1-4-3- پارامترهای منطقی (Logical)
2-4-3- پارمترهای حقیقی (Real) و صحیح (Integer)
3-4-3- پارامترهای رشته‌ای (Character)
5-3- تعریف مشخصات ساختاری قطعه
6-3- توضیحات (Comments)
7-3- مش بندی
8-3- ناحیه ها (مناطق)
9-3- اتصالات الکتریکی (الکترودها)
10-3- آلایش
11-3- تعیین مشخصات و خواص مواد
12-3- تعریف ماده
13-3- کتابخانه سیلواکو
14-3- تعیین مدل ها
15-3- اتصالات الکتریکی
16-3- انتخاب روش حل عددی
17-3- مشخصه های تحلیل
1-17-3- دستور log
2-17-3- دستور Solve
1-2-17-3- حل DC
2-2-17-3- حل AC
3-17-3- استخراج داده ها و رسم نمودارها
4-17-3- تبادل داده ها با MATLAB
5-17-3- ذخیره تصاویر Tonyplot
18-3- مراجع

فصل چهارم - شبیه سازی دیود p-n
1-4- مقدمه
2-4- نیمه‌هادی‌های نوع n و p
3-4- تئوری باند انرژی
4-4- پیوند p-n
5-4- شبیه سازی
1-5-4- مش بندی ساختار
2-5-4- تعریف مناطق
3-5-4-تعریف الکترودها
4-5-4- تعیین ناخالصی
5-5-4- تعریف اتصالات اهمی و شاتکی
6-5-4- تعریف مدلها
7-5-4- انتخاب روش حل عددی
8-5-4- بایاس افزاره
9-5-4- نمایش نمودار جریان-ولتاژ دیود p-n
10-5-4- نمایش ساختار
1-10-5-4- نمایش پروفایل آلایش
11-5-4- نمایش ترازهای انرژی
6-4- مراجع

فصل پنجم - شبیه سازی ترانزیستور ماسفت
1-5- مقدمه
2-5- ساختار ترانزیستورهای ماسفت
3-5- عملکرد ماسفت بدون اعمال ولتاژ به گیت
4-5- ایجاد کانال برای عبور جریان
5-5- اعمال VDS کوچک
6-5- عملکرد به ازای VDS بزرگ
7-5- مشخصه ولتاژ – جریان ماسفت افزایشی
8-5- ساختار باند در ترکیبات نیمه هادی
9-5- شبیه سازی یک ترانزیستور NMOS (مثال اول ماسفت)
1-9-5- کد نویسی در ATLAS
1-1-9-5- فراخوانی ATLAS
2-1-9-5- تعریف مشبندی
3-1-9-5- تعریف مناطق
4-1-9-5- تعریف الکترودها
5-1-9-5- تعریف میزان و نوع آلایش
6-1-9-5- تعریف اتصالات
7-1-9-5- تعریف مدلها
8-1-9-5- انتخاب روش حل
9-1-9-5- بدست آوردن حل اولیه
10-1-9-5- اجرای شبیه سازی برای بدست آوردن یک حل با شرایط بایاس متفاوت
11-1-9-5- نمایش نتایج و ساختار افزاره
10-5- شبیه سازی یک ترانزیستور NMOS (مثال دوم ماسفت)
1-10-5- کدنویسی
11-5- مراجع

فصل ششم - شبیه سازی ترانزیستورIGBT
1-6- مقدمه
2-6- مزایا و معایب IGBT
3-6- ساختار افزاره
4-6- مدل مداری
5-6- مدهای عملکردی افزاره
1-5-6- حالت سد معکوس
2-5-6- حالت هدایت و سد مستقیم
6-6- مشخصه خروجی
7-6- مشخصه انتقالی
8-6- نوع PT و NPT
9-6- شبیه سازی
10-6- مراجع

فصل هفتم - شبیه سازی ترانزیستور بدون پیوند و بدون آلایش اثر میدانی
1-7- مقدمه
2-7- ترانزیستورهای بدون پیوند
1-2-7- عملکرد ترانزیستور بدون پیوند
1-1-2-7- فیزیک ترانزیستور
2-1-2-7- مکانیزم جریان ترانزیستور
3-7- ترانزیستور بدون آلایش
1-3-7- اثر پلاسمای بار
2-3-7- ساختار ترانزیستور بدون پیوند و بدون آلایش
3-3-7- دیاگرام باند انرژی و عملکرد افزاره
4-7- شبیه سازی
1-4-7- مش بندی
2-4-7- نواحی و الکترودها
3-4-7- آلایش و کانتکتها
4-4-7- مدلهای مورد استفاده در شبیه سازی
5-4-7- نتایج شبیه سازی
5-7- منابع

فصل هشتم - شبیه سازی ترانزیستورهای تونلی
1-8- عملکرد و شبیه سازی ترانزیستورهای تونلی
2-8- معایب ترانزیستورهای اثر میدانی فلز اکسید نیمه هادی
1-2-8- توان مصرفی بالا
2-2-8 شیب زیر آستانه بالا
3-8 عملکرد ترانزیستورهای تونلی
4-8- شبیه سازی ترانزیستور تونلی
1-4-8 نتایج شبیه سازی (دیاگرام باند انرژی، جریان و هدایت انتقالی)
2-4-8- تغییر اندازه پهنای ناحیه تونل زنی
3-4-8- بدست آوردن ولتاژ آستانه
4-4-8- بدست آوردن شیب زیر آستانه نقطه‌ای و متوسط
5-4-8- بدست آوردن فرکانس قطع
5-8- مراجع

فصل نهم - شبیه سازی سلولهای خورشیدی چند پیوندی
1-9- مقدمه
2-9- ویژگی های پایه مواد نیمه هادی
1-2-9- اثر فتوولتاییک
2-2-9- تئوری باند انرژی
3-2-9- فرایند جذب و بازترکیب در نیمه‌هادی
4-2-9- دیود تونلی
3-9- اصول اساسی سلول‌های خورشیدی
1-3-9- ولتاژ مدار باز و جریان اتصال کوتاه
2-3-9- ضریب پر شدگی (FF)
3-3-9- بازده تبدیل توان
4-9- چالش‌های سلولهای خورشیدی ناهمگون
5-9- لایه‌های اصلی سلول‌های خورشیدی
1-5-9- سلول بالایی و پایینی
2-5-9- لایه Window
3-5-9- لایه Emitter و Base
4-5-9- لایه BSF
5-5-9- ناحیه تونلی
6-9- طراحی سلول‌های چند‌پیوند
1-6-9- شکاف باند
2-6-9- تطبیق شبکه
3-6-9- تطبیق جریان
7-9- ساختار کلی سلول خورشیدی چند پیوند گروه III-V
8-9- انتخاب مواد و ویژگیهای لایه های مختلف
9-9- شبیه سازی در سیلواکو
1-9-9- ساختار افزاره
2-9-9- نور دهی با AM1.5G
3-9-9- رفتار تونل‌زنی
4-9-9- مشخصه V-I
5-9-9- نرخ تولید فوتون
10-9- کدنویسی در Deckbuild
11-9- نمایش سایر نمودارهای سلول خورشیدی روی ساختار
12-9- نمایش نمودارهای خطی با کمک ساختار
13-9- مراجع

پیوست 1- آشنایی با مدلهای توزیع آماری Silvaco Atlas
پ-1-  توزیع آماری حامل‌ها
پ-1-1- فرمی دیراک و روش بولتزمن
پ-1-2- تراکم حامل ذاتی
پ-1-3- باریک شدگی گاف انرژی

پیوست 2- آشنایی با مدلهای تولید و بازترکیب Silvaco Atlas
پ-2- مدل‌های تولید و بازترکیب حامل
پ-2-1- مدل شاکلی رید هال
پ-2-2- مدل شاکلی رید هال وابسته به تراکم ناخالصی
پ-2-3- تونل زنی به کمک مشکلات شبکه
پ-2-4- مدل اوژه

پیوست 3- آشنایی با مدلهای موبیلیتی Silvaco Atlas
پ-3-1- مدل‌های موبیلیتی
پ-3-1-1- مدل‌های میدان ضعیف
پ-3-1-2- مدل‌های لایه وارونگی
پ-3-1-3- مدل‌های وابسته به میدان عمودی
پ-3-1-4- مدل‌ وابسته به میدان افقی
پ-3-1-5- همخوانی یا عدم همخوانی مدل‌های موبیلیتی
پ-3-1-6- خلاصه مدل‌های موبیلیتی

پیوست 4- آشنایی با مدلهای تونل زنی باند به باند Silvaco Atlas
پ-4-تونل زنی باند به باند
پ-4-1- دیود تونلی
پ-4-2- انواع تونل زنی باند به باند
پ-4-2-1- تونل زنی باند به باند مستقیم
پ-4-2-2- تونل زنی باند به باند غیر مستقیم (تونل زنی به کمک تله)
پ-4-3- مدل‌های تونل زنی باند به باند
پ-4-3-1- مدل استاندارد محلی (BBT.STD)
پ-4-3-2- مدل تونل زنی شِنْک
پ-4-3-3- مدل تونل زنی محلی کِین
پ-4-3-4- مدل تونل زنی باند به باند غیر محلی
پ-4-3-4-1- تقریب WKB و احتمال تونل زنی الکترون
پ-4-3-4-2- محاسبه جریان
پ-4-3-4-3- روش استفاده از مدل غیر محلی در نرم افزار سیلواکو
پ-4-3-4-4- ملاحظات تکمیلی برای مدل غیر محلی
پ-4-3-4-5- خلاصه پارامترهای مربوط به مدل غیر محلی

پیوست 5- آشنایی با مدلهای تحدید کوانتومی Silvaco Atlas
پ-5-1- تحدید کوانتومی در ابعاد نانو
پ-5-2- Bohm Quantum Potential (BQP)
پ-5-2- HANSCHQM

ترجمه مقاله A novel efficient double junction InGaP/GaAs solar cell using a thin carbon nano tube layer

ترجمه مقاله A novel efficient double junction InGaP/GaAs solar cell using a thin carbon nano tube layer
Abstract - Using the two dimensional device simulator Silvaco Atlas, the photovoltaic characteristics of a double junction InGaP/GaAs solar cell [J.P. Dutta, et al., Optik. Int. J. Light Electron Opt. (2016)], were numerically simulated. In this work, the performance of double junction InGaP/GaAs solar cell is modified by adding a thin Carbon Nano tubes film. It was predicted that by adding a 110 nm thin carbon nano tubes film on the surface of the cell, the efficiency would be modified and would increase from 40.879% to 41.95%. Finally, the performances of the cell before and after the addition of the CNT thin film were compared.

چکیده - با استفاده از شبیه ساز افزاره دو بعدی silvaco atlas، مشخصه های فتوولتاییک یک سلول خورشیدی دو پیوند InGaP/GaAs شبیه سازی عددی شده است. در این کار، عملکرد سلول خورشیدی InGaP/GaAs دو پیوند با اضافه کردن یک لایه نانو لوله کربنی نازک اصلاح شده است. پیش بینی شده که با اضافه کردن یک لایه نانو لوله کربنی نازک 110 نانومتری روی سطح سلول، بازده تغییر خواهد کرد و از 40.879% به 41.95% افزایش خواهد یافت. در نهایت، عملکرد سلول قبل و بعد از اضافه کردن لایه نازک CNT  مقایسه شد. 

تعداد صفحات: 10
فرمت: docx و pdf


طرح لایه باز رزومه آماده (فرمت docx)

طرح لایه باز رزومه آماده

این فایل به شما کمک می‌کند تا به راحتی و در چند گام ساده رزومه خودتان را بسازید و آن را به آسانی با دیگران به اشتراک بگذارید. با کمک این فایل می‌توانید به آسانی رزومه‌ حرفه‌ای خود را ایجاد کنید. رزومه شما شامل تمامی جزئیاتی است که برای ساخت رزومه حرفه‌ای به آن نیاز است. برای مشاهده این رزومه می‌توانید نمونه رزومه ای را که توسط آن ایجاد شده را از همین بخش دانلود و مشاهده نمایید. 


همچنین بعد از دانلود فایل حتماً قبل از باز کردن فایل ورد نسبت به نصب فونت های موجود اقدام نمایید.

ترجمه مقاله Efficient InGaP/GaAs DJ solar cell with double back surface field layer

ترجمه مقاله Efficient InGaP/GaAs DJ solar cell with double back surface field layer

An effective and optimised BSF layer is an important layer in both single junction and multijunction solar cells. In this work the use of the double layer BSF for top cell with their varied thicknesses is investigated on GaInP/GaAs DJ solar cell using the computational numerical modelling TCAD tool Silvaco ATLAS. The detail photo-generation rates are determined. The major modelling stages are described and the simulation results are validated with published experimental data in order to describe the accuracy of our results produced. For this optimized cell structure, the maximum Jsc ¼ 17.33 mA/cm2, Voc ¼ 2.66 V, and fill factor (FF) ¼ 88.67% are obtained under AM1.5G illumination, exhibiting a maximum conversion efficiency of 34.52% (1 sun) and 39.15% (1000 suns).

یک لایه BSF بهینه سازی شده و کارآمد مهمترین لایه سلول های خورشیدی تک پیوندی و دو پیوندی می باشد. در این کار استفاده از دو لایه BSF برای سلول بالایی با ضخامت های مختلف روی سلول خورشیدی دو پیوندی GaInP/GaAs با استفاده از محاسبات مدلسازی عددی در سیلواکو بررسی شده است. جزییات نرخ فتوجنریشن تعیین شده است. مراحل اصلی مدلسازی شرح داده شده و نتایج شبیه سازی با داده های تجربی منتشر شده به منظور توصیف دقت و صحت نتایج ما تولید شده اند. برای این ساختار سلول خورشیدی بهینه شده، ماکزیمم JSC=17.33 mA/cm2، VOC=2.66 V و FF=88.67% تحت روشنایی AM1.5G بدست آمده و حداکثر راندمان تبدیل 34.52% (1 sun) و 39.15% (1000 suns) بدست آمده است.

تماس با ما
سفارش پروژه